Research Statement

In my position as a Research Assistant Professor of Behavioral Neuroscience in Psychiatry at the University of Pennsylvania, my primary research focus has been on elucidating neurobehavioral and neuroimaging markers in neurodevelopmentally related psychiatric illness. This work has largely focused on data from two large-scale studies: the Multiplex Multigenerational (MGI) family study of schizophrenia and The Philadelphia Neurodevelopmental Cohort (PNC). In addition, my other interests are focused on the other end of the aging spectrum, where I am keenly interested in improving screening and detection of neurodegenerative disorders. 
	
[bookmark: _GoBack]As an independent investigator, I aim to define multi-dimensional patterns that represent critical “intermediate phenotypes” linking specific clinical and neurocognitive abnormalities to structural and functional changes in brain physiology. I believe sophisticated integration of multiple endophenotypes will enhance early identification of those individuals at risk for developing psychiatric and neurological disorders. In order to arrive at more effective interventions for major neurologic or psychiatric disorders, we need to better understand how major mental illnesses begin and identify incipient signatures of disease. This will allow the development of early interventions that can alter disease progression and improve long-term prognosis and functioning. Such an approach requires a breadth of expertise—spanning imaging, neurocognitive assessment, and advanced statistical methods for data integration.

Heritability of brain structure.
The goal of the MGI project is to illuminate genetic and biologic mechanisms that underlie observed neurocognitive deficits in schizophrenia. Using MRI data from over 400 participants from two collaborative sites, including 190 individuals from 32 multiplex multigenerational families with schizophrenia, I estimated the heritability of brain structures in the sub-cortex (Figure 1). This was the first large-scale study of families with schizophrenia to show that subcortical volumes are heritable. This work was extended to examine the local topology of these structures using a sophisticated 3D shape analysis. In addition, I have used diffusion tensor imaging (DTI) data from this sample to examine how white matter differences in schizophrenia are associated with neurocognitive variability in patients and their relatives. (Roalf et al., Biological Psychiatry, 2015; Roalf et al., 2013 & Roalf et al., 2015 Schizophrenia Research).Figure 1. Three-dimensional reconstruction of subcortical brain structures. Most, but not all, subcortical volumes were heritable in multiplex-multigenerational families. Individual regions are color-coded according to heritability estimates presented in the accompanying table 


Cognitive variability in brain development. 
	Using the PNC, a large neurodevelopmental sample (n=9500), I have expanded upon the work noted above, to evaluate age and sex differences in neurocognitive variability in adolescence and young adulthood. I have uncovered a heretofore unreported developmental pattern. Variability (or inconsistency) in cognitive performance was highest in childhood, declined yearly into mid-adolescence, but, surprisingly, increased into adulthood. This pattern was more evident for cognitive speed than accuracy and higher for males than for females. This post-pubescence increase in cognitive variability may reflect the unfolding of greater specialization related to skill honing and brain maturation. (Roalf et al., Neuropsychology, 2014).

Normative functional brain activation patterns.
I have used data from the 200 healthy comparison individuals in the MGI study to develop an fMRI-adapted version of the Penn Computerized Neurocognitive Battery (CNB) that has enabled the development of normative brain activation-performance relationships (Figure 2). This work demonstrated the feasibility of using fMRI activation patterns to predict typical variation in neurocognitive performance in a number of cognitive domains. These data provide a robust normative sample to which cognitively impaired individuals can be compared, enabling us to link abnormal performance in specific neurocognitive domains with aberrant brain activation patterns in specific brain circuits. (Roalf et al., Neuropsychology, 2014).Figure 2. Whole brain task-activation for each function CNB task.  Group-level activation was robust for each task and was highly consistent with expected domain specific activation. 

	
Quality assurance of diffusion tensor imaging data
Most recently, my work has focused upon diffusion imaging data from the PNC (n=1,601) to establish quality control measures for neurodevelopmental samples and to assess white matter abnormalities in youth with persistent psychosis-like symptoms (on-going). Diffusion tensor imaging (DTI) is often applied in investigation of brain biomarkers for neurodevelopmental and neurodegenerative disorders. However, the quality of DTI measurements, like other neuroimaging techniques, is susceptible to several confounding factors (e.g. motion, eddy currents), which have only recently come under scrutiny in clinical neuroscience. These confounds are especially relevant in adolescent samples where data quality may be compromised in ways that confound interpretation of maturation parameters. Thus, we sought to: 1) establish quality assurance (QA) metrics for the automatic identification of poor DTI image quality; 2) examine the performance of these QA measures in an external validation sample; 3) document the influence of data quality on developmental patterns of typical DTI metrics. We found that a simple measure of temporal signal-to-noise ratio best differentiated unusable from usable DTI data. In addition, we show that the inclusion of poor data results in significant attenuation of known associations between diffusion metrics and age during a critical neurodevelopmental period. (Roalf et al., Neuroimage, 2016).Figure 3. Temporal signal-to-noise ratio (TSNR) maps for each a group  of individuals with poor, good, and excellent DTI QA (n=146 per group). 


Dysfunction of brain glutamate in psychosis
	In an effort to better understand dysfunction at the molecular level in psychosis I am measuring brain glutamate at 7 Tesla in a subsample of PNC participants. This work utilizes a novel imaging technique—glutamate chemical exchange saturation transfer (GluCEST), and we are the first to employ this technique in a psychiatric sample.  This work has validated GluCEST against conventional magnetic resonance spectroscopy (MRS) in several regions of the brain and we have identified abnormalities of neurochemistry in youth on the psychosis spectrum. Glutamate levels were lower across the cortex in both youth at clinical high risk and young patients with schizophrenia. This work is currently being expanded to investigate the associations between brain glutamate and markers of neuroinflammation. Taken together, these findings describe a pattern of abnormal brain neurochemistry early in the course of psychosis that is similar to deficits seen in chronic schizophrenia. Altogether, my recent work is enhancing our ability to identify those individuals who are truly at risk for developing psychosis through the use of comprehensive neurocognitive and neuroimaging markers of illness. (Roalf et al., Molecular Psychiatry, 2017).Figure 4: A) An example single slice GluCEST map. B) Lobar ROIs used for GluCEST data extraction. C) Mean whole slice, subcortical and lobar GluCEST contrast (%) measures (± s.e.m.) in healthy individuals, clinical high risk subjects and schizophrenia patients.  GluCEST contrast was significantly lower, across the subcortex and three cortical lobes, in the psychosis spectrum sample as a whole and in the clinical high risk sample alone, when compared to control subjects.


Neurodegenerative research interests: 
	As an Associate Fellow at the University of Pennsylvania Institute of Aging I have collaborated with neurologists and neuropsychologists from the Penn Memory Center on several projects aimed at the early detection of dementia.  As one in nine older adults over the age of 65 are at risk for developing dementia, the use of cognitive screening measures is necessary in the aging population. 

Improving cognitive screening for dementia
	My own investigations support the idea that both the Mini-Mental Status Examination (MMSE) and Montreal Cognitive Assessment (MoCA) accurately differentiate mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) from normal cognitive aging. However, a direct comparison of these two measures indicated that the MoCA has better overall sensitivity and specificity in AD, MCI and Parkinson’s disease (Figure X). Yet, administration of MoCA is not routine in primary care settings since total administration time of the MoCA ranges between 10-15 minutes. In order to address this issue and make the MoCA more accessible to clinicians in the community, I recently developed a brief, validated, short form MoCA (s-MoCA) that maintains neurological diagnostic utility, takes 5 minutes to administer and is now available for broad clinical use. The s-MoCA was developed in a sample of 1850 individuals using sophisticated item-response theory across various neurological disorders known to affect cognition, thus increasing generalizability. My most recent work provides an easy-to-use conversion table of s-MoCA scores to MMSE scores to facilitate the use of the s-MoCA in clinics where the MMSE has been the standard screening inventory. (Roalf et al., JNNP, 2016; Roalf et al., Alzhiemer’s & Dementia, in press).Figure 5. A plot of the equipercentile equivalent scores on the MMSE and s-MoCA. As an example, a score of 7 on the s-MoCA is equivalent to a score of 25 on the MMSE, as both of these scores fall at the 50th percentile within a sample with a wide range of cognitive impairment, including healthy individuals.


Olfaction as a screening tool for dementia
I have extended this screening work to explore non-cognitive features of dementia that may enhance our ability to accurately identify dementia earlier. This work has focused on the olfactory system. My recent work has confirmed that olfactory deficits precede the onset of dementia and distinguish patients with preclinical dementia symptoms from healthy older adults (HOA;Figure Y). My current work is aimed at using olfaction, in addition to cognitive performance in the prediction of illness vulnerability. I am currently collecting data to measure AD pathology (e.g. amyloid beta, tau) in the nasal fluid, which I believe may represent an objective marker of the olfactory compromise that is 1) associated with behavioral performance and disease progression in dementia and 2) can be measured in a less invasive manner than typical biomarker testing (e.g. PET scanning, spinal tap). In future work, I hope to implement and externally validate the new s-MoCA along with brief olfactory tests in community outpatient facilities and follow individuals longitudinally, which I believe will allow the s-MoCA to become a useful tool in the primary care setting. (Quarmely…Roalf, 2017, Journal of Alzheimer’s Disease; Roalf et al., JNNP).Figure 6. Inclusion of an olfactory identification tests improved the detection of mild cognitive impairment by 15%.


Summary 
	Importantly, I believe much of the work described above has implications to many mental and neurological disorders. The neuroscientific approaches I have used can be adapted to other areas of neuropsychiatry and neurodevelopment. I believe that this work provides a solid foundation to study neurocognitive and neuroimaging markers of illness in a multi-dimensional framework. My expertise in large-scale neurodevelopmental neuroimaging complements on-going Big Data Initiatives, including the ABCD study. Moreover, my use of high field neuroimaging enables the measurement of aspects of brain neurochemistry that are unattainable as lower field strengths. I am excited at the prospects of combining what we are learning from Big Data initiatives into specific, testable hypotheses that will require convergent neuroscientific approaches spanning many levels of neuroscience, including the use of molecular approaches, animal models and human studies.  
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