Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI

Kejia Caia*, Anup Singha, David R. Roalfb, Ravi Prakash Reddy Nangaa, Mohammad Harisa, Hari Hariharana, Ruben Gurb and Ravinder Reddya

\begin{abstract}
In vivo measurement of glutamate (Glu) in brain subcortex can elucidate the role these structures play in cognition and neuropsychiatric disorders. However, accurate quantification of Glu in subcortical regions is challenging. Recently, a novel MRI method based on the Glu chemical exchange saturation transfer (GluCEST) effect has been developed for detecting brain Glu in millimolar concentrations. Here, we use GluCEST to map Glu distributions in subcortical structures of the human brain (e.g. amygdala, hippocampus). Overall, GluCEST was \textasciitilde 40\% higher in gray matter than in white matter. Within the subcortical gray matters, amygdala showed the highest GluCEST contrast. Utilizing MR spectroscopic data, in vivo GluCEST detection sensitivity (\textasciitilde 0.8\% mM−1) in subcortical gray matter was evaluated and was consistent with the previously reported values. In general, the GluCEST map approximates the Glu receptor distribution reported in previous positron emission tomography (PET) studies. These findings suggest that high-resolution GluCEST MRI of subcortical brain structures may prove to be a useful tool in diagnosis of brain disorders or treatment responses. Copyright © 2013 John Wiley & Sons, Ltd.
\end{abstract}

\section*{INTRODUCTION}

Glutamatergic dysfunction in the brain is implicated in cognitive deficits (1–3) and neuropsychiatric disorders including schizophrenia, Alzheimer’s disease, drug abuse addiction and in autism depression (4). Thus, the demand for techniques that quantify and localize changes in brain glutamate (Glu) levels is high. This is of particular interest in subcortical brain regions, including the amygdala, hippocampus, caudate and putamen, as dysfunction in these regions affects cognition (5,6) and emotion processing (7) in various disorders.

Proton magnetic resonance spectroscopy (1H-MRS) is one of the techniques used to assess potential disruptions in neuronal integrity and associated neurochemical dysregulations. While standard 1H-MRS at 3 T allows for sufficient sensitivity to the neurochemistry in many regions of the brain, direct quantification of specific neurotransmitters such as Glu within small subcortical regions remains limited at this field strength (8,9). MRS at ultra-high field, 7 T (10), offers enhanced sensitivity due to higher Larmor frequency and the improved chemical shift dispersion, which enables better characterization of individual resonances (11).

Chemical exchange saturation transfer (CEST) MRI is a novel molecular imaging method that detects metabolites in millimolar (mM) concentration. For example, this technique has been used to quantify macromolecules based on the amide proton transfer (APT) effect (12,13), free calcium (14), starch hydrolysis and glucose mutarotation (15), liver glycogen (16), cartilage proteoglycan (17), and brain Glu with exchangeable amine protons (18). During CEST MRI, exchangeable protons are selectively saturated by the application of a radio-frequency (RF) pulse. The exchange of saturated magnetization with bulk water protons results in reduced bulk water signal in a concentration and pH dependent manner. The CEST technique offers improved spatial resolution as compared with MR spectroscopic techniques due to the prolonged saturation process and the accumulation of an exchanging effect (18).

Previously employed APT methods (19,20) differentiate protein amide protons in gray and white matters, by showing higher APT effect in the white matter than the gray matter. For example, Dula et al (20) demonstrated that white-matter brain structures, such as splenium, have higher (~75\%) APT contrasts than the gray-matter structures including caudate and putamen. Recently, we have demonstrated the feasibility of mapping Glu in healthy brain using the Glu amine proton CEST (GluCEST) effect (18). The notable difference between APT and GluCEST is the experimental conditions. In APT imaging, due to the low exchange rates of amide protons (~30 s−1) associated with labile macromolecules and peptides, a lower saturation pulse amplitude (\textit{B}_1, root mean

\begin{acknowledgments}
\end{acknowledgments}

\begin{keywords}
in vivo measurement of glutamate; computational methods; magnetic resonance spectroscopy (MRS)
\end{keywords}

\begin{abbreviations}
1H-MRS, proton magnetic resonance spectroscopy; APT, amide proton transfer; \textit{B}_1, root mean square; CEST, chemical exchange saturation transfer; Glu, glutamate; GluCEST, glutamate chemical exchange saturation transfer; Glx, glutamate/glutamine; IRB, Institutional Review Board; mM, millimolar; NAA, N-acetylaspartate; PET, positron emission tomography; ppm, parts per million; PRESS, point-resolved spectroscopy; RF, radiofrequency; ROI, region of interest; SVS, single-voxel spectrum; T, Tesla; VAPOR, variable power RF pulses with optimized relaxation delays.
\end{abbreviations}

* Correspondence to: Kejia Cai, University of Pennsylvania, Radiology, Philadelphia, PA, USA.
E-mail: kefyjing@gmail.com
\begin{affiliations}
University of Pennsylvania, Radiology, Philadelphia, PA, USA
D. R. Roalf, R. Gur
University of Pennsylvania, Psychiatry, Philadelphia, PA, USA
\end{affiliations}
square or $B_{1\text{rms}} = 50 \text{ Hz (1.2 \mu T)}$ and longer duration (~6 s) were used (13) compared with GluCEST MRI ($B_{1\text{rms}} = 155 \text{ Hz (3.6 \mu T)}$ and 1 s). Using high-saturation B_1, faster-exchange (~2000 Hz) amine protons associated with Glu can be mapped using the GluCEST method. GluCEST has been demonstrated to differentiate Glu in gray and white matters by showing higher contrast in gray matter than in white matter (18).

This study is to further investigate whether GluCEST MRI can be used to map glutamate distributions in small subcortical gray-matter structures. In addition, we compare GluCEST contrast with the $^1\text{H}-\text{MRS}$ data to estimate the in vivo GluCEST detection sensitivity.

METHODS

All experiments were performed on a Siemens 7 T whole-body scanner with a vendor supplied 32-channel volume RF coil. The study was conducted under an approved Institutional Review Board (IRB) protocol.

GluCEST MRI

GluCEST MRI was acquired from six healthy male subjects (18–67 years old) using previously reported methods (18). T_1-weighted anatomical 3D magnetization prepared rapid gradient echo (MPRAGE) images of whole brain (160 axial slices) were collected using the following parameters: repetition time (TR)/echo time (TE) = 2110/3.2 ms, inversion time (TI) = 1.5 s, in-plan resolution = $0.9 \times 0.9 \text{ mm}^2$ and slice thickness = 1 mm. The 3D reformatting of the MPRAGE images was used for selecting one axial and one sagittal slice for GluCEST imaging. The GluCEST imaging parameters were number of averages = 2, slice thickness = 5 mm, field of view = $200 \times 200 \text{ mm}^2$, matrix size = 192×192, TR = 16 s. The saturation pulse train with 10 Hanning-windowed pulses (100 ms each, 99.8% duty cycle, $B_{1\text{rms}}$ of 155 Hz or 3.6 \mu T) was followed by fast low-angle shot imaging (FLASH) readout (flip angle = 10°, readout TR/TE = 5.5/2.6 ms) of entire K-space. Raw CEST images were acquired at varying saturation offset frequencies ranging from ±2 to ±4 ppm (relative to water resonance) with a 0.25 ppm increment. To remove field inhomogeneity induced artifacts in GluCEST maps, images for B_1 and ΔB_0 field mapping were acquired and used for GluCEST reconstruction as previously described (17,18,21). In brief, CEST images obtained from ±2 to ±4 ppm were interpolated using the cubic spline method to generate images with a fine step size of 0.01 ppm. B_0 corrected CEST images at ±3 parts per million (ppm) were generated from the interpolated CEST images by picking signals according to the frequency shift in the ΔB_0 map. The B_0 corrected ±3.0 ppm images were then used for computing the percentage GluCEST contrast, which is equal to $100(M_{-3 \text{ppm}} - M_{+3 \text{ppm}})/M_{+3 \text{ppm}}$ where $M_{-3 \text{ppm}}$ and $M_{+3 \text{ppm}}$ are B_0 corrected images at −3 ppm and +3 ppm respectively. B_1 inhomogeneity artifacts in GluCEST maps were removed using B_1 calibration curves as previously reported (21). The B_0 and B_1 corrected GluCEST contrasts were then averaged within expertly drawn regions of interest (ROIs). Overall, the acquisition of CEST images from one slice takes about 10 min. The acquisition of additional images required for mapping B_1 and B_0 field variation takes about 5 min.

MRS of glutamate

MRS data were collected from six healthy male subjects in a separated study. Localized manual shimming of the B_0 field...
was performed in the left amygdala and hippocampus (voxel size: 10 × 10 × 10 mm³) separately to obtain a localized water line width of ~0.15 ppm or less. Voxel placement was guided based on the 3D reformatting of high-resolution whole-brain MPRAGE images collected with the same parameters as above. Water suppressed short-echo single-voxel spectra (SVSs) were obtained with a custom-modified point-resolved spectroscopy (PRESS) sequence (22,23) to quantify Glu using parameters the following: spectral width = 4 kHz, number of points = 2048, averages = 128, TE = 20 ms and TR = 3 s. By changing the gradient ramp time and spoiler area, we were able to use a short TE of 20 ms. Water suppression was achieved with variable power RF pulses with optimized relaxation delays (VAPOR) (24), which was played out before the SVS acquisition. Acquisition time was ~6 min per spectrum. Water reference spectra were also acquired using the same sequence with water suppression turned ‘off’ and 16 averages. The total acquisition time for spectra from both voxels, structure scans and shimming was approximately 40 min.

We used custom-built spectroscopy processing packages developed in MATLAB (R2007b, MathWorks, Natick, MA, USA) for spectral processing, as recently reported (10). In brief, SVSs were processed from the raw free induction decay data by exponential apodization of 10 Hz, Fourier transformation, phase correction and baseline removal (25) followed by least-squared curve fitting. For Glu quantification, water suppressed SVSs were fitted as a sum of Gaussian peaks initially positioned at locations corresponding to brain metabolites. The integration of the 2.35 ppm Glu peak was normalized by a water reference signal for Glu quantification.

Statistical analysis

Two-tailed paired Student’s t-tests were used to compare GluCEST contrasts and Glu quantifications using ¹H-MRS in different brain structures. The difference is considered to be significant for \(p < 0.05 \).

RESULTS

A high-resolution GluCEST map of an axial brain slice corrected for \(B_0 \) and \(B_1 \) inhomogeneities is shown in Figure 1B. The \(\Delta B_0 \) map (Figure 1C) of this slice generally shows ~0.5 ppm variations and the \(B_1 \) map (Figure 1D) less than 50% of variance compared with the reference \(B_1 \) (\(B_{1\text{ref}} \)). The GluCEST map (Figure 1B) shows higher GluCEST in subcortical structures, such as putamen, caudate and thalamus, than cortex and occipital gray matters. White matter has much lower contrast than all gray-matter tissues and negligible contrast is seen from the cerebrospinal fluid (CSF). The spatially smoothed GluCEST map shown in Figure 2B approximates the PET volume distribution map of glutamate.
receptor (26) (Figure 2D), despite differences in brain shape (Figure 2A versus 2C), resolution and sensitivity, demonstrating the ability of GluCEST MRI to map the regional distribution of Glu in the brain.

High-resolution GluCEST imaging was also performed for a sagittal brain slice containing amygdala and hippocampus structures (Figure 3). The ΔB_0 map (Figure 3B) of this slice generally shows variation within the interval (-1, 1) ppm and the B_1 map (Figure 3C) shows less than 50% variation in most regions of the brain despite the area around cerebellum and a small portion of the frontal lobe. Due to the large B_1 inhomogeneity, the B_1 inhomogeneity induced artifact in the GluCEST map (Figure 3D) cannot be fully corrected in these two regions (masked with ovals). The magnified GluCEST map (Figure 3F) from the amygdala–hippocampus region shows higher contrast from amygdala than hippocampus. The summarized mean GluCEST contrast of the subcortical structures is shown in Figure 4. Amygdala shows the highest contrast ($15 \pm 1\%$) in all the gray-matter structures, which is significantly higher than that of hippocampus ($12 \pm 1\%$). Consistent with previous reports (18), white-matter tissue has about 40% less contrast than most gray-matter tissues. The GluCEST regional distribution approximates to glutamate spatial variations quantified by 1H-MRS (27).

A modified PRESS based SVS sequence using short TE down to 20 ms was successfully implemented in the subcortex at 7 T. Using a 32-channel head coil, we were able to obtain water suppressed spectra from amygdala and hippocampus with 1 cc voxel size and adequate signal to noise ratio (Figures 5 and 6). The Glu peak located at 2.35 ppm is clearly visible and well separated from N-acetylaspartate (NAA) at 2 ppm. Glu concentration quantified from MRS was higher in amygdala as compared with hippocampus (Figures 5 and 6). Mean Glu concentration (Figure 5B) was $17 \pm 3\,$mM in the amygdala and $14 \pm 3\,$mM in the hippocampus. These values are comparable to those in a recent study at 3 T (8). The differences of GluCEST contrast and Glu concentration quantified by MRS between amygdala and hippocampus are $2.8 \pm 1.3\%$ and $3.4 \pm 2.0\,$mM respectively, giving a GluCEST detection sensitivity of $\sim 0.8\%$ per mM in vivo, which is close to the previously reported 0.77% mM$^{-1}$ in gray matter (18).
DISCUSSION

Subcortical Glu was measured using 7 T 1H-MRS and CEST MRI, a novel alternative molecular imaging method that has been recently utilized for detecting metabolites in millimolar concentration. The Glu peak at 2.35 ppm was clearly resolvable using 1H-MRS and the concentration of Glu was higher in the amygdala than the hippocampus. Consistently, the observed GluCEST is about 40% higher in gray matter than in white matter. Within gray-matter structures, amygdala shows the highest GluCEST contrast, which is consistent with previous findings that amygdala has the highest ratio of relative regional cerebral blood flow to glucose metabolism in the brain (28). GluCEST maps also show a similar distribution pattern as compared with PET maps of the Glu receptor (26). Comparing GluCEST regional variation with glutamate concentrations quantified using 1H-MRS, we estimate the in vivo GluCEST detection sensitivity of 0.8% mM$^{-1}$ in gray matters. This is consistent with the previous estimation based on numerical simulations of full Bloch–McConnell equations (18). Taken together, these data provide...
additional evidence that Glu in subcortical structures is measurable using GluCEST MRI.

In our previous study (18), a superficial brain slice in the axial view was scanned to demonstrate the feasibility of GluCEST MRI for differentiating glutamate levels in gray and white matter. Here, we extend upon these findings to map glutamate distribution in the brain subcortex. Importantly, neurochemical dysfunction within subcortical structures is often implicated in neuropsychiatric and neurodegenerative disorders. For example, the amygdala facilitates perception of salient stimuli and is associated with social/emotional processing and emotional learning, which is affected in schizophrenia (29). Moreover, schizophrenia is associated with persistent dysfunction of Glu transmission (30). Given the importance of the subcortical structures in emotion, memory and other behavioral domains, accurate quantification of the neurochemicals and neurotransmitters via GluCEST may prove useful in improving diagnosis specificity or quantifying treatment response. However, a few issues must be considered. Precise quantification of Glu from short-echo MRS remains a challenge due to overlapping signal from macromolecules (31,32). While GluCEST mapping remains a challenge because GluCEST contrast as 3 ppm varies with tissue pH and imaging parameters, including RF saturation power and duration.

Direct conversion of GluCEST contrast into absolute concentration remains a challenge because GluCEST contrast as 3 ppm may have contributions from creatine, gamma-aminobutyric acid (GABA), amide protons and intrinsic magnetic transfer asymmetry as discussed previously (18). Furthermore, using in vitro experiments of denatured protein solutions to estimate in vivo conditions (e.g. exchange rates) may not be analogous. Based upon the numerical simulations of full Bloch–McConnell equations (18), we estimate that glutamate is the major contributor to the observed GluCEST. However, more work is needed to precisely determine the amount of contamination from other factors.

Finally, successful implementation of GluCEST in some brain regions remains challenging as CEST MRI is vulnerable to other factors.

Acknowledgements
This work was supported by the National Center for Research Resources and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through grant P41 EB015893 and grants R21-DA032256, R01-MH067022, P50-MH064045 and T32 MH019112.

REFERENCES

